J. Joe Payne

248-229-0174 •	jjpayne@andrew.cmu.edu •	linkedin/jjoepayne •	github/jjoepayne •	jjoepayne.github.io
EDUCATION				
Carnegie Mellon Unive	rsity GPA: 4.0/4.0			Pittsburgh, PA
Doctor of Philosophy in M	Mechanical Engineering			Expected August 2024
Selected Coursework: R	obot Dynamics & Analysis, No	nlinear Control, Optima	al Control & Reinforce	ment Learning
University of Michigan	GPA: 3.95/4.0			Ann Arbor, MI
Bachelor of Science in E	ngineering in Computer Science	ce, Mechanical Enginee	ering, Dual Degree	December 2017
SKILLS				
Programming Languag	es: C/C++, Python, Julia, MAT	LAB		
Software: Simulink, Ado	be Illustrator, LaTEX, Linux, Git			
Hardware: Mechatronics	s, Microcontrollers, 3D Printing	Mill, Lathe, Soldering		
DOCTORAL RESEARC	н			
Carnegie Mellon Univer	rsity			
Thesis: State Estimation	Techniques for Hybrid Dynam	ical Systems		2018-Present
Optimal Estimation for	Hybrid Systems			
 Developing an iLC obtain gradients of 	QR-based algorithm for optimal f the value function	state estimation throu	igh contact events uti	ilizing the saltation matrix to
Created generalize Julia to enable der	ed frameworks for hybrid systemonstration on any event driver	em simulation and estin hybrid system	mation using function	al programming concepts in
Momentum Observer B	Based Contact Estimation for	Bipedal Robots		
Developing an alg enable active contained.	orithm in MATLAB utilizing a c act mode detection without for	ollection of momentum ce sensors on the feet	observers with differ	ing dynamic assumptions to
 Demonstrating the tion with MuJoCo a 	e accuracy of the contact mode and Simulink	estimation on a 30 de	gree-of-freedom biped	dal robotic system in simula-
Kalman Filtering for Un	ncertain Hybrid Systems			
 Derived the uncert 	tainty aware saltation matrix wh	iich linearizes hybrid tra	ansition events with st	tructural uncertainty, such as
varying ground he	ight or unknown surface param	eters		

- Developed the Uncertainty Aware Salted Kalman Filter (uaSKF) using the uncertainty aware saltation matrix to update covariances through hybrid events, which reduced estimation error by up to 60%
- Wrote MATLAB simulations for a variety of systems, including an ASLIP-hopper to demonstrate the algorithm's effectiveness

ADDITIONAL GRADUATE RESEARCH

Kalman Filtering for Hybrid Dynamical Systems

- · Co-developed the Salted Kalman Filter (SKF), which improves covariance propagation through hybrid events
- · Demonstrated performance comparable to high count particle filters while running nearly 1000x faster

Simultaneous Localization and Mapping for Highly Dynamic Systems

- Co-developed the Periodic SLAM algorithm, which utilizes multiple factor graphs to achieve improved state estimation
- Utilized motion capture to demonstrate accurate results on trials where existing methods failed to provide estimates

INDUSTRIAL EXPERIENCE

Amazon

Software Development Engineer

- Maintained and updated a service for managing internal language translation tasks
- Handled server outages with our customer-facing products as an on-call engineer
- Communicated directly with end users to prioritize and implement feature requests

Salt Lake City, UT January-August 2018

2020-2021

2019-2021

Amazon

Software Development Engineering Intern

- · Created a dynamic webpage enabling economists to more efficiently view sales data
- · Created a data cleaning and machine learning pipeline utilizing Spark

Quantum Signal

Mechanical Engineering Intern

- · Converted an ATV to allow for autonomous driving with a focus on gear shifting
- · Designed a custom PCB to control a linear actuator enabling shifting
- · Designed and tuned a controller to reliably reach desired gears

PUBLICATIONS

Nathan J. Kong; **J. Joe Payne**; James Zhu; and Aaron M. Johnson. Saltation Matrices: The Essential Tool for Linearizing Hybrid Dynamical Systems. arXiv:2306.06862 [cs.RO]. 2023. Under review

James Zhu; J. Joe Payne; and Aaron M. Johnson. Convergent iLQR for Safe Trajectory Planning and Control of Legged Robots. In arXiv:2304.00346 [cs.RO], 2023. Under review

J. Joe Payne; Nathan J. Kong; and Aaron M. Johnson. The Uncertainty Aware Salted Kalman Filter: State Estimation for Hybrid Systems with Uncertain Guards. In IEEE/RSJ Intl. Conference on Intelligent Robots and Systems (IROS), 2022.

Hans Kumar; J. Joe Payne; Matthew Travers; Aaron M. Johnson; and Howie Choset. Periodic SLAM: Using Cyclic Constraints to Improve the Performance of Visual-Inertial SLAM on Legged Robots. In IEEE Intl. Conference on Robotics and Automation (ICRA), 2022.

Nathan J. Kong; **J. Joe Payne**; George Council; and Aaron M. Johnson. The Salted Kalman Filter: Kalman Filtering on Hybrid Dynamical Systems. Automatica, 2021.

ABSTRACTS AND POSTERS

J. Joe Payne; and Aaron M. Johnson. Multiple Model State Estimation for Hybrid Dynamical Systems. In Dynamic Walking, June 2023.

J. Joe Payne; Nathan J. Kong; and Aaron M. Johnson. State Estimation for Hybrid Systems: Saltation Based Methods. In IROS Workshop on Agile Robotics, October 2022.

J. Joe Payne; Nathan J. Kong; and Aaron M. Johnson. Kalman Filtering for Hybrid Systems. In Dynamic Walking, June 2022. Hans Kumar; J. Joe Payne; Matthew Travers; Aaron M. Johnson; and Howie Choset. Periodic SLAM: Using Cyclic Constraints to Improve the Performance of Visual-Inertial SLAM on Legged Robots. In ICRA Workshop on Visual-Inertial Navigation Systems, May 2021.

J. Joe Payne; Nathan J. Kong; and Aaron M. Johnson. Flamingobot: a Flamingo Inspired Minimal Energy Standing Biped Robot. In Dynamic Walking, Canmore, Canada, June 2019.

TEACHING EXPERIENCE

Graduate Teaching Assistant Dynamics and Dynamic Systems and Controls

- Ran weekly recitations and office hours for approximately 30 students (5.0/5.0 student evaluation)
- · Wrote clearly understandable solution sheets for homeworks and exams
- · Proctored and graded weekly quizzes
- · Graded exams and ensured consistency in grading across all TAs

LEADERSHIP AND VOLUNTEER EXPERIENCE

Reviewer, IEEE Robotics and Automation Letters, ICRA, IROS	2020-Present
Mentor, Gwen's Girls 3D Printing and Robotics Programs	2021-2023
Session Chair, IEEE International Conference on Intelligent Robots and Systems	2022
President, University of Michigan Stand-Up Comedy Club	2015-2017
Local Trips Chair, University of Michigan Snowboard Club	2015-2017

Fall 2019, Winter 2021

Saline, MI Summer 2015